
John E. Huschka, Collaboration Foundry
September 12, 2017 6

Modern SharePoint Customization

Tonight’s Menu

7

Salad Changing user interface architecture

Soup Changing toolset architecture

Tapas Technology and tools

Dessert/Coffee Recommendations, questions and discussion

8

UI in the SharePoint World

9

Client #1

ASP.Net

ASP.Net

Client #1

UI in the Client World

10

JavaScript 1

2

3

Why Client-Side?
• Networking everywhere.

• Universal JavaScript.

• Client platform diversity: Phone, tablets…
• Client software knows how to render/run on the client.

• Sharing of cloud server resources:
• No individual can customize cloud-based servers.

11

12

Tools in the SharePoint World

13

Workflows

Workflows

Event Hdlrs

Webparts

Solutions

Forms

Tools in the Client World

14

Client #1

JavaScript
webparts

Flow
Workflows

Azure
Webjobs

Pattern &
Practices

PowerApps
Azure

Functions

Azure
Logic Apps

15

SharePoint Framework
• A framework by which client-side components can be integrated

into SharePoint pages (modern and classic).

• Initial release supports web parts for both modern and classic pages.

• Coming to SharePoint 2016 in late 2017 (Feature Pack 2).

• “Extensions” (in preview) provides client-side integration with the
SharePoint UI

16

A New Toolset…

17

Diagram from Andrew Connell. See https://www.linkedin.com/pulse/free-10-day-email-course-me-
understanding-framework-andrew-Connell.

SharePoint Modern Experience
• A major upgrade to the SharePoint UI

supporting cloud-first, mobile-first:
• Sites

• Libraries

• Pages

• “Classic” experience is not deprecated.

• Currently, limited branding and
customization options.

• Planned for SharePoint 2016.

18

Microsoft Patterns & Practices
• Microsoft-sponsored, open-source.

• Large, active, evolving collection of tools (wrapping the CSOM) and
techniques.

• Multi-platform support:
• .NET (C#, VB.NET)
• PowerShell
• JavaScript (TypeScript)

• Useful for many contexts, but especially provisioning.

• Highly recommended.

19

Provisioning: Old versus New
• “Save site as template”

• Challenges:
• Compressed file format

• Deployment = site

• Not Microsoft recommended

• Deployment: Feature framework

• PowerShell:
Get-PnPProvisioningTemplate

• Advantages:
• Uncompressed XML file format

• Deployment = component(s)

• CSOM based

• Microsoft recommended

• Deployment:
Apply-PnPProvisioningTemplate

20

Microsoft Flow
• Cloud-based low-code workflow
• Available as part of O365 or separate

subscription
• Not a true triggered architecture
• Custom Azure function integration
• Currently, more of an individual

solution:
• Not all SharePoint columns types

supported
• No source code, deployment story
• Runs as individual who deployed

• Not unique to SharePoint…

21

Connectors, Connectors

22

Azure Logic Apps
• Azure cloud-based, code-optional workflow

• Same application as Microsoft Flow, but…

• Closer to an enterprise solution:
• Solution source code is available
• Creatable in Visual Studio
• Can integrate with custom functions
• Good logging/debugging

23

Microsoft PowerApps
• Cloud-based application development

• Available as part of O365 and
Dynamics 365 or separate subscription

• Common Data Service available

• Flow integration

• Custom Azure function integration

24

Azure Functions & Webjobs
• Azure cloud-based code-first custom processes.

• Can be triggered from SharePoint via webhook

• Can be scheduled

• Can be integrated into other tools

• Wide variety of languages.

25

26

Recommendations
• Try the tools, technology. Get acquainted with them.

• Prepare your organization for cloud-based integration.

• Take advantage of integration opportunities.
It’s not “all or nothing” for “classic” or “modern” architecture.

• Don’t forget your simple, core toolset.

27

Questions, Comments, Discussion

28

